之所以需要进行这样的划分,是因为频谱资源的使用是排他的,在特定的时空中,一个频率如果被A用途使用,就不能同时被B用途使用,否则就会发生干扰。这种性质,类似于高速公路上的车道,也类似于信笺纸上面的一行一行空间,在一个给定时间段/对应一个给定位置,一条车道只能分派给一辆汽车使用,否则容易发生交通事故;一行信笺纸,在给定的位置只能写一个字,否则两三个字叠在一起就容易模糊看不清楚,这就是「干扰」。
因此,要完成一个通讯过程,首先我们需要对应的频率资源,也就是「频段」,或者说是一条车道;而带宽,就可以被理解为在单位时间内传输的信息/通过的车辆的多少。这样一来,带宽的问题就转化为:1.提高通行效率(提升单个汽车的载荷);在通讯中,这被称为频谱效率(Spectral Efficiency,以bps/Hz来衡量)。
2.拓宽车道宽度。更高效的调制方法可以提升频谱效率上面我们提到,在AM和FM之外,工程师们发明了非常多的方法,来提升无线电波中的每个「振动」传输的数据量/单个汽车的载重量(bps/Hz)。其中,Quadrature Amplitude Modulation(QAM正交振幅调制)技术是自3.5G以来频谱效率提升的重要途径,并在5G时代发挥了重要的作用。
之前我们提到调制的目标是将原始信息(二进制编码)负载到无线电波,比如用无线电波的「峰谷谷峰」的状态来代表「1001」;此处,为了提高传输的效率,工程师们用更高级的调制算法,使得一个「峰谷谷峰」的振动周期,能够代表更多的原始信息(意即代表更多位数的二进制编码,比如用一个周期来代表「0110010111010001」)▲调制方式的进步 图片来源:www.skyworksinc.com, 5G in Perspective: A Pragmatic Guide to What is Next让我们回到汉字的例子:假设最常用的汉字是1024个,那么每次传输过程中只要把每个汉字对应的编码(从1到1024)用类似汽车大灯闪烁的方式表示出来即可;当每个信号包含16个状态点(16QAM)时,最大需要64个信号才能完成一个汉字的传输(64*16=1024,对应最多需要闪烁1024下),但当每个信号包含1024个状态点(1024QAM)时,每一个信号就能代表一个汉字,因而大大提高了传输效率。
新技术的应用解锁更多频谱资源通过拓宽车道宽度来提升带宽是更容易想到的办法,但实现起来也是很有难度的。如频谱划分图所示,现有的可用频谱资源已经被分配殆尽;未被占用的频率,往往位于高频区域,这部分频谱资源类似于农业中的盐碱地,是利用难度更大的频段。直观一点来说,当汽车时速越高,高速公路调度管理的难度就越大,稍有不慎就有可能造成车道偏离/出轨或者酿成交通事故。