汽车大灯的例子是一个非常简化的模型;但实际的信号传输过程并没有这么简单。仍然以《史记》为例:首先可以把这本书里面的全部52万字转换成(二进制下的)数字编码再将这些编码序列负载到无线电波中(这个过程叫做调制),并发射出去。接收端的天线接收相关无线电波,并将无线电波中的信息还原为二进制的数字编码(这个过程叫做解调)。
手机/电脑将解调之后的二进制数字编码转换为汉字。调制:将二进制数字编码嵌入/加载到无线电波中。二进制下的数字编码只有0,1两种状态,而无线电波的形态是无数的峰谷起伏,因此很容易建立起峰、谷与0、1之间的「某种」对应关系。基于这种对应关系,我们可以将「1001」转换为无线电波的「峰谷谷峰」的状态,同时也可根据这个「峰谷谷峰」的状态,还原出「1001」的原始数值。
这只是一个不严谨的简化框架,下面我们正式介绍两种「调制」方法——AM和FM。没错,这里的AM和FM就是我们在收音机上看到的那两个英文字母。大约100年前,这两种调制方法就被用于广播。Amplitude Modulation(AM),振幅调制。AM这一调制方式于上世纪初出现,最初被用于语音传输。Amplitude意思是振幅,也就是说在这种模式下,可以通过调整载波(Carrier)的波幅(在图形中,振幅体现为波形的高度,波幅越大高度越高)使其能够体现原始信息的特征(将原始信息的图形特征附加到载波中,以使调制后的图形与原始信息呈现相似的图形特征);▲ Amplitude Modulation 示意图(其中,第一行是原始信息,第二行是载波,第三行是调制之后的AM信号;调制后,AM信号的外廓与原始信号呈现相似的形态)Frequency Modulation(FM),频率调制。
FM出现的时间比AM略晚,由一位无线电广播爱好者发明。所谓Frequency Modulation是指可以通过调整载波(Carrier)的频率(在图形中,频率体现为波峰波谷的密度,密度越高频率越高)使其能够体现原始信息的特征(将原始信息的图形特征附加到载波中,以使调制后的图形与原始信息呈现相似的图形特征)。
与AM不同的是,在振幅调制模式下,调制后的波形与原始信息在呈现相似的「形状」(如下图中的黑色原始信息与AM转换之后的红色波形图),但是在频率调制中,调制后的图形振幅保持不变,但在原始信息波峰的位置表现出更高的频率/密度,在原始信息波谷的的位置表现为更低的频率/更稀疏——这里用波形的密集和稀疏来对应原始信息的波峰和波谷(如下图中的黑色原始信息与FM转换之后的蓝色波形图)。
AM和FM是离我们生活最接近,原理也较简单的调制方式。在AM和FM之后,还有非常多的调制方法被发明,但核心思想是类似的。从3G到4G和5G,信息速率的提升靠什么?我们已经知道,无线电波是无线通讯的载体,那么无线通讯的速率——也就是所谓「带宽」,究竟是由什么因素决定的呢?之前我们提到,中国和美国的无线电频率,都已经被划分给特定的用途和用户使用。